
Minimum Class Confusion for Versatile
Domain Adaptation

Ying Jin, Ximei Wang, Mingsheng Long, Jianmin Wang
Tsinghua University

Presented at ECCV2020

Unsupervised Domain Adaptation by Backpropagation

Figure 1. The proposed architecture includes a deep feature extractor (green) and a deep label predictor (blue), which together form
a standard feed-forward architecture. Unsupervised domain adaptation is achieved by adding a domain classifier (red) connected to the
feature extractor via a gradient reversal layer that multiplies the gradient by a certain negative constant during the backpropagation-
based training. Otherwise, the training proceeds in a standard way and minimizes the label prediction loss (for source examples) and
the domain classification loss (for all samples). Gradient reversal ensures that the feature distributions over the two domains are made
similar (as indistinguishable as possible for the domain classifier), thus resulting in the domain-invariant features.

forward models can handle. We further assume that there
exist two distributions S(x, y) and T (x, y) on X ⌦ Y ,
which will be referred to as the source distribution and
the target distribution (or the source domain and the tar-
get domain). Both distributions are assumed complex and
unknown, and furthermore similar but different (in other
words, S is “shifted” from T by some domain shift).
Our ultimate goal is to be able to predict labels y given
the input x for the target distribution. At training time,
we have an access to a large set of training samples
{x1,x2, . . . ,xN} from both the source and the target do-
mains distributed according to the marginal distributions
S(x) and T (x). We denote with di the binary variable (do-
main label) for the i-th example, which indicates whether
xi come from the source distribution (xi⇠S(x) if di=0) or
from the target distribution (xi⇠T (x) if di=1). For the ex-
amples from the source distribution (di=0) the correspond-
ing labels yi 2 Y are known at training time. For the ex-
amples from the target domains, we do not know the labels
at training time, and we want to predict such labels at test
time.
We now define a deep feed-forward architecture that for
each input x predicts its label y 2 Y and its domain label
d 2 {0, 1}. We decompose such mapping into three parts.
We assume that the input x is first mapped by a mapping
Gf (a feature extractor) to a D-dimensional feature vector
f 2 RD. The feature mapping may also include several
feed-forward layers and we denote the vector of parame-
ters of all layers in this mapping as ✓f , i.e. f = Gf (x; ✓f).
Then, the feature vector f is mapped by a mapping Gy (la-
bel predictor) to the label y, and we denote the parameters
of this mapping with ✓y . Finally, the same feature vector f
is mapped to the domain label d by a mapping Gd (domain

classifier) with the parameters ✓d (Figure 1).
During the learning stage, we aim to minimize the label
prediction loss on the annotated part (i.e. the source part)
of the training set, and the parameters of both the feature
extractor and the label predictor are thus optimized in or-
der to minimize the empirical loss for the source domain
samples. This ensures the discriminativeness of the fea-
tures f and the overall good prediction performance of the
combination of the feature extractor and the label predictor
on the source domain.
At the same time, we want to make the features f
domain-invariant. That is, we want to make the dis-
tributions S(f) = {Gf (x; ✓f) |x⇠S(x)} and T (f) =
{Gf (x; ✓f) |x⇠T (x)} to be similar. Under the covariate
shift assumption, this would make the label prediction ac-
curacy on the target domain to be the same as on the source
domain (Shimodaira, 2000). Measuring the dissimilarity
of the distributions S(f) and T (f) is however non-trivial,
given that f is high-dimensional, and that the distributions
themselves are constantly changing as learning progresses.
One way to estimate the dissimilarity is to look at the loss
of the domain classifier Gd, provided that the parameters
✓d of the domain classifier have been trained to discrim-
inate between the two feature distributions in an optimal
way.
This observation leads to our idea. At training time, in or-
der to obtain domain-invariant features, we seek the param-
eters ✓f of the feature mapping that maximize the loss of
the domain classifier (by making the two feature distribu-
tions as similar as possible), while simultaneously seeking
the parameters ✓d of the domain classifier that minimize the
loss of the domain classifier. In addition, we seek to mini-
mize the loss of the label predictor.

Domain Adaptation (DA)

Moment Matching Adversarial Training

Long et al. ICML15
Ganin et al. JMLR16

DA: Different Scenarios
butions. [1] introduces H- and H�H-divergence to char-
acterize the domain discrepancy, which are further devel-
oped into matching the corresponding deep representations
by [9, 43] and [35] respectively. Regarding the method-
ology, kernel-based DA [13, 12, 23, 26] and adversarial
DA [9, 43, 35, 17, 36, 20, 4, 32] are widely-used in the field.

Inspired by GANs [14], adversarial DA involves a sub-
network as the domain classifier to discriminate features of
different domains while the deep learner tries to generate
the features that deceive the domain classifier. For example,
RevGrad [9] utilize a parametric subnetwork as the domain
discriminator and adversarially align the features via reverse
gradient backpropagation. ADDA [43] instead facilitates
the adversarial alignment with GAN-based objectives in an
asymmetric manner. MCD [35] conducts a min-max game
between the feature generator and the two-branch classifiers
in order to reduce the H�H-divergence. On par with the
feature-level adversarial alignment, generative pixel-level
adaptation [17, 36, 20, 4, 32] utilizes Image-to-Image trans-
lation techniques to capture the low-level domain shifts.

In addition, other methods are proposed to learn target-
specific structures. DRCN [11] involves a reconstruction
penalty on target samples. [34] utilizes tri-training to obtain
target pseudo labels. [37] refines the target decision bound-
ary based on the cluster assumption. iCAN [50] iteratively
applies sample selection on pseudo-labeled target samples
and retrains the network.

Standard domain adaptation assumes that the two do-
mains share the identical label space. [6, 7] further open up
the partial setting where source label space subsumes the
target one, However, it is not trivial to directly migrate the
current models in the standard DA as they are prone to suf-
fer from the negative transfer effect. PADA [7] attempts to
alleviate this issue by detecting and down-weighting sam-
ples belonging to the source outlier classes.

3. Method

3.1. Preliminaries

Given a source domain Ds = {(xs
i , y

s
i)}

ns
i=1 of ns la-

beled samples associated with |Cs| categories and a target
domain Dt = {xt

i}
nt
i=1 of nt unlabeled samples associated

with |Ct| categories. DA occurs when the underlying distri-
butions corresponding to the source and target domains in
the shared label space are different but similar [2] to make
sense the transfer. Unsupervised DA considers the scenario
that we have no access to any labeled target examples.

Vanilla Setting Under this setting, the source and target
domains share the identical label space, i.e., Cs = Ct.

Partial Setting The source label space subsumes the tar-
get one, i.e., Cs � Ct. The source labeled data belonging to
the outlier categories Cs\Ct are unrelated to the target task.

C2

C1
Input: Xs + Xt

Xs: Source samples
Xt: Target samples
Ys: Source labels

G

G: Backbone Network
F: Classifier

Classification Loss

L1

L2

FC-BN-ReLU-Dropout

Ys

Shared Lmax

Figure 2: The overall framework of our proposed Adaptive
Feature Norm approach. The backbone network G denotes the
general feature extraction module. F is employed as the task-
specific classifier with l layers, each of which is organized in
the FC-BN-ReLU-Dropout order. During each iteration, we
apply the feature norm adaptation upon the task-specific fea-
tures along with the source classification loss as our optimiza-
tion objective. For the Hard variant of AFN, the mean feature
norms of source and target samples are constrained to a shared
scalar. For the Stepwise variant, we encourage a progressive
feature-norm enlargement with respect to each individual ex-
ample at the step size of �r. To this end, far away from the
small-norm regions after the adaptation, the target samples can
be correctly classified without any supervision.

3.2. L2-preserved Dropout
In this part, we first prove that the standard Dropout op-

erator is L1-preserved. As our algorithm is computed based
on the L2 norms of the hidden features, we introduce the
following L2-preserved Dropout operation to meet our goal.

Dropout is a widely-used regularization technique in
deep neural networks [38, 18]. Given a d-dimensional in-
put vector x, in the training phase, we randomly zero the
element xk, k = 1, 2,. . . , d with probability p by samples
ak ⇠ P that are generated from the Bernoulli distribution:

P (ak) =

(
p, ak = 0

1� p, ak = 1
(1)

To compute an identity function in the evaluation stage, the
outputs are further scaled by a factor of 1

1�p and thus

x̂k = ak
1

1� p
xk , (2)

which implicitly preserves the L1-norm in both of the train-
ing and evaluation phases since xk and ak are independent:

E[|x̂k|] = E[|ak
1

1� p
xk|] =

1

1� p
E[ak]E[|xk|] = E[|xk|] .

(3)
However, as we are in pursuit of adaptive L2 feature norm,
we instead scale the output by a factor of 1p

1�p
and obtain

x̂k = ak
1

p
1� p

xk , (4)

loss

xs

xt gt

gsfs

ft

ys

yt

DNN:
AlexNet
ResNet
……

D

×

×

(a) Multilinear Conditioning

loss

xs

xt gt

gsfs

ft

ys

yt

DNN:
AlexNet
ResNet
……

D

fR

fR

gR

gR

(b) Randomized Multilinear Conditioning

Figure 1: Architectures of Conditional Domain Adversarial Networks (CDAN) for domain adaptation,
where domain-specific feature representation f and classifier prediction g embody the cross-domain
gap to be reduced jointly by the conditional domain discriminator D. (a) Multilinear (M) Conditioning,
applicable to lower-dimensional scenario, where D is conditioned on classifier prediction g via multi-
linear map f ⌦ g; (b) Randomized Multilinear (RM) Conditioning, fit to higher-dimensional scenario,
where D is conditioned on classifier prediction g via randomized multilinear map 1

p

d
(Rf f)� (Rgg).

Entropy Conditioning (dashed line) leads to CDAN+E that prioritizes D on easy-to-transfer examples.

adversarial domain adaptation. A simple conditioning of D is D(f � g), where we concatenate the
feature representation and classifier prediction in vector f � g and feed it to conditional domain
discriminator D. This conditioning strategy is widely adopted by existing conditional GANs [34, 25,
35]. However, with the concatenation strategy, f and g are independent on each other, thus failing
to fully capture multiplicative interactions between feature representation and classifier prediction,
which are crucial to domain adaptation. As a result, the multimodal information conveyed in classifier
prediction cannot be fully exploited to match the multimodal distributions of complex domains [47].

3.2 Multilinear Conditioning

The multilinear map is defined as the outer product of multiple random vectors. And the multilinear
map of infinite-dimensional nonlinear feature maps has been successfully applied to embed joint
distribution or conditional distribution into reproducing kernel Hilbert spaces [47, 44, 45, 30]. Given
two random vectors x and y, the joint distribution P (x,y) can be modeled by the cross-covariance
Exy[�(x) ⌦ �(y)], where � is a feature map induced by some reproducing kernel. Such kernel
embeddings enable manipulation of the multiplicative interactions across multiple random variables.

Besides the theoretical benefit of the multilinear map x⌦y over the concatenation x�y [47, 46], we
further explain its superiority intuitively. Assume linear map �(x) = x and one-hot label vector y in
C classes. As can be verified, mean map Exy[x� y] = Ex[x]�Ey[y] computes the means of x and
y independently. In contrast, mean map Exy [x⌦ y] = Ex [x|y = 1]� . . .�Ex [x|y = C] computes
the means of each of the C class-conditional distributions P (x|y). Superior than concatenation, the
multilinear map x⌦ y can fully capture the multimodal structures behind complex data distributions.

Taking the advantage of multilinear map, in this paper, we condition D on g with the multilinear map
T⌦ (f ,g) = f ⌦ g, (4)

where T⌦ is a multilinear map and D(f ,g) = D(f ⌦ g). As such, the conditional domain discrimi-
nator successfully models the multimodal information and joint distributions of f and g. Also, the
multi-linearity can accommodate random vectors f and g with different cardinalities and magnitudes.

A disadvantage of the multilinear map is dimension explosion. Denoting by df and dg the dimensions
of vectors f and g respectively, the dimension of multilinear map f ⌦ g is df ⇥ dg, often too high-
dimensional to be embedded into deep networks without causing parameter explosion. This paper
addresses the dimension explosion by randomized methods [40, 26]. Note that multilinear map holds

hT⌦ (f ,g) , T⌦ (f 0,g0)i = hf ⌦ g, f 0 ⌦ g0
i

= hf , f 0i hg,g0
i

⇡ hT� (f ,g) , T� (f 0,g0)i ,

(5)

where T� (f ,g) is the explicit randomized multilinear map of dimension d ⌧ df ⇥ dg . We define

T� (f ,g) =
1
p
d
(Rf f)� (Rgg) , (6)

4

Long et al. NeurIPS18, Xu et al. ICCV19
Peng et al. ICCV19, Peng et al. ICML19

CDAN: Unsupervised DA (UDA) AFN: UDA + Partial DA (PDA)

M3SDA: Multi-Source DA (MSDA) DADA: Multi-Target DA (MTDA)

Versatile Domain Adaptation (VDA)

S T

UDA

S T

PDA

S

T1

Tn

…
…

MTDA

T

S1

Sn

…
…

MSDA
S1

Sn

…
…

MS - PDA

T S

…
…

MT - PDA

1. A variety of DA scenarios: closed-set, partial-set DA, multi-source and multi-target DA.
2. Existing DA methods: designed only for a specific scenario, and may underperform for scenarios

they are not tailored to.
3. Practical applications, complicated data acquired in the real-world makes it difficult to confirm the

label sets and domain configurations.
4. We need a versatile method which can tackle different scenarios at the same time.

T1

Tn

Minimum Class Confusion (MCC)

The classifier trained on the source domain
may confuse to distinguish the correct class
from a similar class.

Class Confusion

Less Class Confusion, More Transfer Gains!

Class
Correlation

!!"
!"!

!""
!#!!

#!

#"

��

��

$ %

None
Moment
Matching

Adversarial
Training ��

1 2 3 4

Versatile DA

Batch
! = 2

Minimum
Class

Confusion

Category
Normalization

"#

Uncertainty
Reweighting

" $

	&'($

Probability
Rescaling

!#!!

)*$ 		+

Minimum Class Confusion (MCC)

!𝑌!

Probability
Rescaling

#𝑍! 𝑇 Temperature rescaling

Minimum Class Confusion (MCC)

Class
Correlation

𝐂

!𝑌!

Probability
Rescaling

#𝑍! 𝑇 Temperature rescaling

Pair-wise class correlation

Minimum Class Confusion (MCC)

Class
Correlation

Uncertainty
Reweighting

𝐂 𝐖

𝐇!𝑌!

Probability
Rescaling

#𝑍! 𝑇 Temperature rescaling

Pair-wise class correlation

Weighting Mechanism

Minimum Class Confusion (MCC)

Class
Correlation

Category
Normalization

)𝐂

Uncertainty
Reweighting

𝐂 𝐖

𝐇!𝑌!

Probability
Rescaling

#𝑍! 𝑇 Temperature rescaling

Pair-wise class correlation

Weighting Mechanism

Category Normalization
in RandomWalk

Minimum Class Confusion (MCC)

Class
Correlation

Minimum
Class

Confusion

Category
Normalization

)𝐂

Uncertainty
Reweighting

𝐂 𝐖

𝐇!𝑌!

Probability
Rescaling

𝐿"##

#𝑍! 𝑇 Temperature rescaling

Pair-wise class correlation

Weighting Mechanism

Category Normalization
in RandomWalk

MCC Loss

Minimum Class Confusion (MCC)

A Versatile Approach

A General Reguralizer

Minimum Class Confusion (MCC)

Results ‒ MTDA & MSDA

A big margin on DomainNet, the largest and hardest dataset to date.

Results ‒ PDA

Results ‒ UDA

Results ‒ MSPDA & MTPDA

Results ‒ Regularizer

22.0 %

6.5 %

7.2 %

1.5 %

4.3 %

• We propose Versatile Domain Adaptation (VDA) ;
• A novel loss function: Minimum Class Confusion (MCC)
• A versatile domain adaptation method that can handle various DA scenarios
• Strong performance in VDA
• A general regularizer for existing DA methods

• We are looking forward to seeing
• Effective methods for VDA
• Other researchers combine our MCC with their methods to improve performance

Conclusion

Code is available at https://github.com/thuml/MCC

Thank you !

Questions ?

