A MULTI-PLAYER MINIMAX GAME FOR GENERATIVE ADVERSARIAL NETWORKS

Ying Jin, Yunbo Wang, Mingsheng Long, Jianmin Wang, Philip S. Yu, Jiaguang Sun

School of Software, BNRist, Tsinghua University, China Research Center for Big Data, Tsinghua University, China Beijing Key Laboratory for Industrial Big Data System and Application

Generative Adversarial Network (GAN)

A framework which has various applications.

Problems: Mode Collapse

Image-to-Image Translation

photo \rightarrow Monet

Pixel Prediction

Pathak et al. CVPR16 Zhu et al. NIPS17

GMAN – Generative Multi-Adversarial Networks

Durugkar et al. ICLR17

DDL – Discriminator Discrepancy Loss

$$L_{\text{DDL}}(x; \{D_k\}_{k=1}^K) = \frac{1}{K} \sum_{k=1}^K \left| \phi(D_k(x)) - \sum_{k'=1}^K \frac{\phi(D_{k'}(x))}{K} \right|$$

GAN: $\Phi(x) = \log(x)$; WGAN: $\Phi(x) = x$

The ideal situation for GMAN: K discriminators excels in separate region

Larger DDL, More diversity

Durugkar et al. ICLR17

DDL Minimax Game

$$L(\theta_G, \{\theta_D^k\}_{k=1}^K) = \mathbb{E}_{x \sim P_{\text{data}}} \sum_{k=1}^K \frac{\phi\left(D_k\left(x\right)\right)}{K}$$
$$+ \mathbb{E}_{z \sim P_z} \sum_{k=1}^K \frac{\phi\left(1 - D_k\left(G(z)\right)\right)}{K}$$
$$+ \lambda \mathbb{E}_{x \sim P_{\text{data}}} L_{\text{DDL}}\left(x; \{D_k\}_{k=1}^K\right)$$
$$+ \lambda \mathbb{E}_{z \sim P_z} L_{\text{DDL}}\left(G(z); \{D_k\}_{k=1}^K\right)$$

Layer Sharing

Results – Toy Dataset

GMAN

Maximize DDL

Minimax DDL

Results – Cifar10/STL10

Model	DCGAN	WGAN-GP	SN-GAN
Vanilla	6.02/38.59	6.61 / 30.56	7.58 / 25.50
+ GMAN	6.42/37.18	6.98 / 27.22	7.66 / 23.89
+ DDL	6.63 / 34.48	7.11 / 25.58	7.90 / 21.01
+ DDL*	6.37 / 35.16	7.04 / 26.14	7.71 / 23.64

Table 1. IS/FID results on CIFAR10. DDL* is a variant of our method without shared layers between discriminators.

Model	WGAN	WGAN-GP	SN-GAN
Vanilla	7.57 / 64.20	8.42 / 55.10	8.79 / 43.20
+ GMAN	7.82 / 54.93	8.72 / 47.26	8.86 / 41.67
+ DDL	7.92 / 48.05	8.94 / 44.80	9.21 / 39.68

 Table 2. IS/FID results on the STL-10 dataset.

Results – CelebA/ImageNet/LSUN

CelebA	IS / FID	ImageNet	IS / Intra FID	
WGAN	1.67 / 45.17	SN-GAN-Proj	36.8 / 92.4	
+ GMAN	1.66 / 41.09	+ GMAN	37.6 / 89.5	
+ DDL	1.75 / 39.15	+ DDL	39.7 / 83.7	

Table 3. Results of our method on CelebA and ImageNet.

Model	FID	Perceptual Path Length		
Widder		Full	End	
StyleGAN	3.324	2419.78	1349.88	
+ GMAN	2.862	2378.29	1302.09	
+ DDL	2.606	2314.87	1282.97	

 Table 4. Results of our method on LSUN-Bedroom.

Vanilla

Ours

Results – Ablation Study

K	SN-GAN + GMAN	SN-GAN + DDL
1	7.58 / 25.50	7.58 / 25.50
4	7.60 / 24.17	7.63 / 22.87
8	7.59 / 23.88	7.70 / 22.82
12	7.60 / 23.33	7.62 / 22.66
16	7.66 / 23.89	7.90 / 21.01
20	7.63 / 22.57	7.70/22.33
32	7.58/23.22	7.59 / 22.96

λ	0.0	0.001	0.1	0.3	1.0	2.0
IS	7.58	7.48	7.45	7.63	7.90	7.64
FID	25.50	23.04	24.01	23.92	21.01	23.53

Table 5. The IS/FID results of GMAN and our method with respect to the number of discriminators on CIFAR10 (backbone: SN-GAN). K = 1 is equivalent to the vanilla SN-GAN. The best result is achieved at K = 16. For all candidates of K, our method consistently outperforms GMAN.

Table 6. The influence of λ when applying DDL to SN-GAN on CIFAR10. $\lambda = 0$ is equivalent to the vanilla SN-GAN.

Conclusions

- 1. Discriminator Discrepancy Loss (DDL) to diversify multi-discriminators of GANs.
- 2. A multi-player minimax game for GANs, where Ds maximize DDL and G minimizes DDL.
- 3. Layer-sharing architecture for hyperparameter efficiency and collaboration.
- 4. Orthogonal to existing GANs and consistently outperforms GMAN.

Questions?